
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Automatic Extraction of Vehicle, Bicycle and Pedestrian Traffic 

from Video Data 

FINAL REPORT 

Prepared by: 

Nathan Huynh, Ph.D. 
Robert Mullen, Ph.D. 

John Rose, Ph.D. 
Quentin Eloise 

Department of Civil and Environmental Engineering 
University of South Carolina 

FHWA-SC-21-09 

December 2021 

Sponsoring Agencies: 

South Carolina Department of Transportation Federal Highway Administration 

Office of Materials and Research South Carolina Division 

1406 Shop Road Strom Thurmond Federal Building 
Columbia, SC 29201 1835 Assembly Street, Suite 1270 

Columbia, SC 29201 



 

 

 

 
  

 

 

 

  

 

 

 
 

 

 

 

  

 
 

 

 

 

 

   

 

 

 
 

 
 
 

 
 

 

 

 

 

 

 

  

 
 

   

Technical Report Documentation Page 

1.  Report No 

FHWA-SC-21-09 
2. Government Accession No. 3.  Recipient’s Catalog No. 

4. Title and Subtitle 

Automatic Extraction of Vehicle, Bicycle, and Pedestrian 
Traffic from Video Data 

5.  Report Date 

December 31, 2021 

6.  Performing Organization Code 

7.  Author/s 

Nathan Huynh, Robert Mullen, John Rose, and Quentin 
Eloise 

8.  Performing Organization Report No. 

9.  Performing Organization Name and Address 

University of South Carolina 
Department of Civil and Environmental Engineering 
300 Main St. 
Columbia, SC 29208 

10.  Work Unit No. (TRAIS) 

11.  Contract or Grant No. 

SPR No. 742 
12. Sponsoring Organization Name and Address 

South Carolina Department of Transportation 
Office of Materials and Research 
1406 Shop Road 
Columbia, SC 29201 

13.  Type of Report and Period Covered 

Final Report 

14.  Sponsoring Agency Code 

15.  Supplementary Notes 
16.  Abstract 

This project investigated the use of traffic cameras to count and classify vehicles.  The intent is to provide an 
alternative approach to pneumatic tubes for collecting traffic data at high volume locations and to eliminate 
safety risks to SCDOT personnel and contractors. The objective is to develop algorithms to post-process the 
48-hour videos to determine the number of vehicles in each one of four categories: motorcycles, passenger cars 
and light trucks, buses/campers/tow trucks, and small to large trucks.  To this end, background subtraction and 
foreground detection algorithms were implemented to detect moving vehicles, and a Convolutional Neural 
Network (CNN) model was developed to classify vehicles using thermal images obtained from a custom-built 
thermal camera and solar-powered trailer. Additionally, to overcome false detection of vehicles due to either 
camera motion or erratic light reflection from the pavement surface, an algorithm was developed to keep track 
of each vehicle’s trajectory and the vehicle trajectories were used to determine the presence of an actual 
vehicle. The developed algorithms and CNN model were incorporated into a Windows-based application, 
named DECAF (detection and classification by functional class) to enable users to easily specify the folder 
that contains the video files to be processed, specify the region for which traffic should be analyzed, specify 
the time interval for which the data should be aggregated, and view the detection and classification results in 
two report formats: 1) a spreadsheet with vehicle-by-vehicle information, and 2) a PDF summary report with 
totals aggregated for the user-specified interval.  DECAF was tested using videos collected from five different 
sites in Columbia, SC, and the overall detection and classification accuracy for the hours evaluated was found 
to be 95% or higher. 
17.  Key Words 

Video-based traffic data collection, convolutional 
neural network, thermal imaging. 

18.  Distribution Statement 

No restrictions. This document is available to 
the public through the National Technical 
Information Service, Springfield, VA 22161. 

19. Security Classification (of this 
report) 

Unclassified 

20. Security Classification (of this 
page) 

Unclassified 

21. No. Of Pages 22.  Price 

Form DOT F 1700.7 (8-72) Reproduction of form and completed page is authorized 

iv 



 

 

 
 

 

  

DISCLAIMER 

The contents of this report reflect the views of the author who is responsible for the facts and the 
accuracy of the data presented herein. The contents do not necessarily reflect the official views 
or policies of the South Carolina Department of Transportation or the Federal Highway 
Administration. This report does not constitute a standard, specification, or regulation. 

The State of South Carolina and the United States Government do not endorse products or 
manufacturers. Trade or manufacturer’s names appear herein solely because they are considered 
essential to the object of this report. 

v 



 

 

 

 

 

 

  
 

 

 

  

ACKNOWLEDGMENTS 

The project team greatly appreciate the guidance and assistance from the following Project 
Steering and Implementation Committee members: 

 Wise, Stacy (Chair) 
 Anderson, Todd (Formerly with SCDOT) 
 Morris, Yolanda (FHWA) 
 Heaps, Meredith 
 Swygert, Terry 

vi 



 

 

 

 

 

 

 

 

 

 

 

EXECUTIVE SUMMARY 

The objectives of this research were to: 1) develop image processing algorithms to automatically 
extract vehicle counts and classifications as well as counts of motorcycles, bicycles, and 
pedestrians from videos, and 2) incorporate the developed algorithms into a stand-alone 
application with an easy-to-use interface to enable the SCDOT staff to process traffic videos in 
house. 

A survey of State Departments of Transportation (DOTs) was conducted to obtain information 
regarding the use of video-based systems for traffic counting and classification to guide the 
research. Responses from 19 DOTs indicated that the video-based system is the most commonly 
used non-intrusive method for vehicle counting and classification. The next three most popular 
non-intrusive methods are: 1) side-fire radar, 2) infrared axle detector, and 3) radar detector. 
Among the 11 DOTs that use the video-based systems, two use them to collect traffic data during 
the day only and nine use them to collect traffic data both during daytime and nighttime.  Only 
three out of the 11 DOTs that use video-based systems have the vehicle classification task 
performed in-house; the rest outsource this work to a vendor. Regarding the desired 
classification accuracy rate, two indicated 90% or better, five indicated 95% or better and three 
indicated 98% or better. From the responses, it was determined that the video-based system 
developed in this project should have the capability to process traffic data during both the 
daytime and nighttime and produce counting and classification accuracy at 95% or better. 

To accomplish the first objective, background subtraction and foreground detection algorithms 
were implemented to detect moving vehicles, and a Convolutional Neural Network (CNN) 
model was developed to classify vehicles. CNN is a deep learning approach that learns features 
and patterns directly from the input images.  Its performance is affected by the quality of the 
provided images, which was found to be an issue during the nighttime when the visible camera 
was used. To overcome the issue of poor image quality at night with the traditional visible 
traffic camera, the FLIR TrafiSense2 Dual (visible and thermal) camera was purchased and 
custom-built to allow for recording of thermal images to an external drive.  To power the thermal 
camera, the SCDOT solicited bids for a portable solar trailer with specific power requirements, 
height of crank up mast, and storage capacity. To overcome false detection of vehicles due to 
either camera motion or erratic light reflection from the pavement surface, an algorithm was 
developed to keep track of each vehicle’s trajectory and the vehicle trajectories were used to 
determine the presence of an actual vehicle. 

To accomplish the second objective of this project, a Windows-based application, named 
DECAF (detection and classification by functional class) was developed to enable users to easily 
specify the folder containing the video files to be processed, specify the region for which traffic 
should be analyzed, and specify the time interval for which the data should be aggregated.  This 
application uses the thermal CNN model to classify each vehicle at every frame of a running 
video while the vehicles are within the user-specified region of interest.  The final classification 
of each vehicle is the one most frequently classified.  To speed up the processing of the video, 
the detection and classification is performed for every other frame. It was found that if the traffic 
to be processed is light to medium, the ratio of processing time to actual video time is about 0.85.  
That is, DECAF can process a 100-minute video in 85 minutes.  When the traffic to be processed 
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is heavy, the ratio could be as high as 1.15; this is due to the higher number of vehicles that need 
to be detected and tracked, and the higher number of images that need to be classified. The 
application allows the user to view the detection and classification results in two report formats: 
1) a spreadsheet with vehicle-by-vehicle information, and 2) a summary report with totals 
aggregated for the user-specified interval. 

A 95% accuracy or higher in both detection and classification can be achieved with DECAF for 
roadways with up to four lanes in each direction.  Therefore, it is recommended that the SCDOT 
consider using the thermal camera and the developed DECAF application to collect traffic data at 
high-volume areas. Deploying the trailer and thermal camera on the side of the road will be safer 
for the SCDOT personnel than deploying MetroCount’s pneumatic tubes across multiple lanes. 
The level of effort required for deploying the trailer and thermal camera is similar to that of 
deploying the Miovision Scout which the SCDOT has done in the past.  The advantage of using 
the in-house equipment and software is that it will save the SCDOT the video processing cost, 
approximately $500.00 per 48-hour count. There are two situations when the deployment of the 
thermal camera should be avoided. The first is windy conditions; video quality deteriorates due 
to noticeable camera motion even when the camera is anchored with two cables.  The second is 
when the air temperature exceeds 90 degrees Fahrenheit.  At these temperatures, the thermal 
camera has to recalibrate due to the temperature changes which results in periodic blackouts. 
During such blackouts, the foreground images (vehicles) are indistinguishable from the 
background (pavement and other fixed objects), and therefore, vehicles that appear during 
blackouts will not be detected and classified. 
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CHAPTER 1: INTRODUCTION 

The Federal Highway Administration's (FHWA's) Office of Highway Policy Information 
maintains national programs to track traffic trends, vehicle distributions, and weight to meet data 
needs specified in federal highway legislations.  Activities include the development of 
guidelines, regulations, direct data collection, data processing, research, analysis, and 
professional conferences (FHWA, 2021a). For the data collection component, the FHWA 
created the Highway Performance Monitoring System (HPMS) in 1978 that stores data on the 
extent, condition, performance, use and operating characteristics of the nation's highways 
(FHWA, 2021b). The traffic data themselves are collected by State Departments of 
Transportation (DOTs) and reported to the FHWA on an annual basis. To this end, the South 
Carolina Department of Transportation (SCDOT) annually collects and provides the FHWA 
traffic volume and vehicle classification data on SCDOT-maintained roads using a combination 
of Continuous Count Stations (CCS) and Short Duration Count Stations (SDCS). 

Traffic volume is reported as Annual Average Daily Traffic (AADT), which is the total volume 
of vehicle traffic on a road for a year divided by 365 days.  The AADT traffic data are used by 
many units within the SCDOT not only to meet HPMS data reporting requirements, but also to 
make informed decisions, and support various studies related to planning, design, operations, 
safety, maintenance, and environmental analysis.  Examples of projects that require AADT data 
are corridor operations and/or safety studies, pavement design, traffic signal control 
improvement, and pavement rehabilitation/reconstruction.  AADT data are also used to make 
work zone lane closure decisions.  Therefore, the reported AADT values must be accurate. 

The FHWA developed a standardized vehicle classification system in the mid-1980s.  This 
system classifies vehicles as one of 13 class groups, as shown in Figure 1-1 (FHWA, 2014c).  It 
was developed to meet the needs of different traffic data users and to support various studies that 
require detailed vehicle class groups.  For example, the application of the SCDOT Pavement 
Design Guide requires knowledge of the number of Class 5, 6, 8, and 9 vehicles on the road to be 
designed or rehabilitated, the application of the SCDOT Roadway Design Manual requires 
knowledge of projected vehicle types for they affect lane widths, corner radii, and level of 
service, and the application of the SCDOT Traffic Calming Guidelines requires knowledge of the 
expected percentage of vehicles with a long wheelbase.  As is the case with AADT, the SCDOT 
needs to obtain vehicle classification data not only for HPMS reporting purposes but also to 
support various in-house studies and statewide projects. 
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Figure 1-1. FHWA's 13 vehicle category classification 

(source: FHWA, 2014c) 

To collect traffic volume and vehicle classification data, the SCDOT uses a combination of Peek 
ADR-2000 and TDC-EMU 3 traffic counters/classifiers at CCS, and MetroCount RoadPod VT 
counters and Miovision Scout cameras at SDCS.  The Peek ADR and TDC-EMU traffic 
counters/classifiers provide the most accurate estimate of AADT because they collect traffic data 
continuously for 24 hours per day and 365 days per year.  The CCS AADT is computed using 
the AASHTO method, which is an average of averages developed by the American Association 
of State Highway Transportation Officials. The AASHTO method is recommended according 
to the Traffic Monitoring Guide (2013) because “it allows factors to be computed accurately 
even when a considerable number of data is missing from a year at a site, and because it works 
accurately under a variety of data conditions (both with and without missing data).”  The 
installation of Peek ADRs and TDC-EMUs throughout the state to count and classify vehicles is 
not economically feasible. Currently, the SCDOT has about 187 CCS and weigh-in-motion 
stations located throughout the entire state; these stations are primarily on interstates.  To provide 
sufficient statewide coverage, the SCDOT has about 12,000 SDCS where 24-hour, 48-hour, or 
one week of data are collected on an annual, biennial, or triennial basis, depending on the 
functional class. The goal of SDCS is to collect data that can be adjusted by factoring and 
creating an AADT estimate that represents a typical traffic volume any time or day of the year.  

Currently, the primary method being used by the SCDOT to collect 48-hour traffic data at SDCS 
is the MetroCount Counter with pneumatic tubes as shown in Figure 1-2.  This method is 
considered ‘intrusive’ because its use requires placing the rubber tubes across the roadway.  This 
intrusive method is problematic on high-volume roads.  Specifically, it is not safe for the data 
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collection crew to be in the roadways, it is difficult to secure tubes on roads with multiple lanes, 
and high-volume roads tend to have a higher percentage of classification errors due to multiple 
vehicles passing the tubes at the same time.  At locations where it is clearly unsafe to use the 
MetroCount counters, the SCDOT would use the Miovision Scout camera to record traffic and 
then send the video to the vendor to process at a cost. This method is both inconvenient and 
costly for the SCDOT. 

Building on current practice and the benefits of a video-based traffic data collection system, the 
aim of this research project is to develop models, algorithms, and software to provide the 
SCDOT with the means to count and classify vehicles to reduce safety risks to its personnel and 
contractors and to improve vehicle count and classification.  The specific objectives of this 
project are to: 1) develop image processing algorithms to automatically extract vehicle counts 
and classifications as well as counts of motorcycles, bicycles, and pedestrians from videos, and 
2) incorporate the developed algorithms into a stand-alone application with an easy-to-use 
interface to enable the SCDOT staff to process traffic videos in house. 

Figure 1-2. Pneumatic tubes deployed on Walter Price Road, Columbia, SC 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

The literature review conducted in this project indicates that among the different object 
recognition methods, Convolutional Neural Networks (CNNs) are the most widely used for 
visual imagery.  For this reason, this project focused exclusively on applying CNN to classify 
vehicles.  There are two different approaches to applying CNNs: supervised and unsupervised. 
Supervised learning is an approach that is defined by its use of labeled datasets.  That is, the 
datasets are designed to train or “supervise” algorithms into classifying data or predicting 
outcomes accurately. On the other hand, unsupervised algorithms discover hidden patterns in 
data without the need for human intervention (Delua, 2021).  The supervised CNN approach is 
the more popular of the two and one that is utilized in this project.  A prerequisite for applying 
the CNN model is object detection. A review of previous work on vehicle detection and 
classification is provided below, followed by a brief background on object recognition and 
CNNs. 

2.1 Background on object recognition 

Object recognition involves identifying objects in digital photographs or videos.  It is 
accomplished via a series of tasks: localization, classification, and detection.  Object localization 
refers to the task of identifying the location of one or more objects in an image and drawing a 
bounding box around their extents. Image classification involves assigning a class label to an 
object. Object detection combines these two tasks - drawing a bounding box around each object 
of interest in the image and assigning a class label to them.  Collectively, these tasks are referred 
to as object recognition. Object recognition is a trivial task for humans; however, the algorithms 
and models that are needed to have computers perform this task automatically are rather complex 
(Karpathy, 2016). For this project, the ultimate purpose of object recognition is to locate 
vehicles in a video, draw rectangular bounding boxes around them, and then determine their 
vehicle groups. 

The challenges that all automated systems faced in object recognition are variations in 
viewpoints, scale, object deformation, occlusion, illumination, background clutter, and intra-
class variation (Liu et al., 2016; Boukerche et al., 2017).  In the past, researchers utilized a two-
stage approach where in the first stage, features using human-designed heuristics are extracted, 
and in the second stage, a classifier is used to recognize the objects (Rawat et al., 2017 and 
LeCun et al., 1998). A key limitation of this approach is that the recognition accuracy is largely 
determined by the ability of the designer to come up with an appropriate set of features for the 
feature extractor module in the first stage.  Moreover, the feature extractor must be modified for 
each new set of objects that need to be detected.  To overcome these limitations, recently 
researchers have developed deep learning models that exploit multiple layers of nonlinear 
information processing for feature extraction and transformation, as well as for pattern analysis 
and classification (Rawat et al., 2017).  Among these deep learning models, convolutional 
neural networks (CNN) are the leading architecture for image recognition, classification, and 
detection. 

2.2 Background on convolutional neural networks 

Convolutional neural networks are a subclass of Artificial Neural Networks (ANNs) which are 
computing systems that are loosely modeled after the neural structures of human brains.  Similar 
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to the human brain, ANNs have hierarchical connections, where the output of a neuron becomes 
the input of other neurons. The network forms a directed, weighted graph.  As such, an ANN 
consists of a collection of simulated neurons, where each neuron is a node that is connected to 
other nodes via links that correspond to biological axon-synapse-dendrite connections. Each link 
has a weight, which determines the strength of one node's influence on another. Biological 
neurons are simulated using different activations functions, whose primary purpose is to activate 
different states when an input value is given.   

In a typical ANN, each node in a layer is connected to all nodes in the next layer. However, in a 
CNN, small regions of the input layers are connected to nodes in the next layer. This region is 
known as the local receptor field and is translated into an image to create a feature map from the 
input layer to the hidden layer. This process is called convolution (Rawat et al, 2017 &, LeCun et 
al, 2015). The CNN architecture has many variations, but in general, it consists of a 
convolutional and pooling layer, a fully connected layer, and an output class layer.  Figure 2-1 
shows the general structure of a CNN. 

Figure 2-1. CNN general structure (source: Rawat et al., 2017) 

The convolutional layers serve as feature extractors, and thus they learn the feature 
representations of their input images. This is accomplished by having neurons in the 
convolutional layers arranged to form feature maps. Each neuron in a feature map has a 
receptive field, which is connected to a neighborhood of neurons in the previous layer via a set of 
trainable weights. Inputs are then convolved with the learned weights to compute a new feature 
map, and the convolved results are sent to a nonlinear activation function, which allows for the 
extraction of nonlinear features (Rawat et al, 2017). 

The purpose of the pooling layers is to reduce the spatial resolution of the feature maps to have 
spatial invariance to input distortions and translations (LeCun et al., 1989a, 1989b; LeCun et al., 
1998, 2015). That is, the output feature maps may be sensitive to the location of the features in 
the input. To eliminate this sensitivity, pooling is used to down sample the feature maps. This 
has the effect of making the resulting down-sampled feature maps more robust to changes in the 
position of the feature in the image, referred to as “local translation invariance.”  The two most 
used pooling methods are average pooling and max pooling.  Average pooling calculates the 
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average value for each patch on the feature map, whereas max-pooling calculates the maximum 
value for each patch of the feature map. 

Several convolutional and pooling layers are usually stacked on top of each other to extract more 
abstract feature representations in moving through the network. The fully connected layers that 
follow these layers interpret these feature representations and perform the function of high-level 
reasoning. After passing through the fully connected layers, the final layer uses the softmax 
activation function which is used to get probabilities of the input being in a particular class 
(classification). 

2.3 Vehicle detection and classification using non-CNN methods  

There are many challenges associated with vehicle detection and classification. They include 
(Boukerche et al., 2017): 

 Diversity: There are 13 different vehicle classes. 
 Multiplicity: Vehicles of the same class have different shapes or designs.   
 Ambiguity: Different vehicle classes have similar shapes or designs. 
 Heterogenous views: variations in camera angle, scale, and viewpoints. 
 Light conditions: Different illumination conditions or time of day. 
 Environmental conditions: Different weather conditions.  
 Occlusions: Closed vehicles, hidden views, etc. 

Jazayeri et al. (2011) developed a comprehensive approach to localizing target vehicles in videos 
under various environmental conditions. They continuously extracted vehicle geometry features 
from the video, projected them onto a 1-D profile, and constantly tracked the vehicles’ 
trajectories. The authors used the temporal information of the features and their motion behaviors 
for vehicle identification, which compensates for the complexity in recognizing vehicle shapes, 
colors, and types. They probabilistically modeled the motion in the field of view according to the 
scene characteristics and the vehicle motion model. The hidden Markov model (HMM) was used 
to separate target vehicles from the background and track them probabilistically. The authors 
evaluated the effectiveness of their approach using daytime and nighttime videos of different 
road types.  Experimental results showed an overall detection accuracy of 86.6% for cars and 
85.9% for background. The authors concluded that their proposed approach is effective and 
given that it was implemented in real-time, it would be easy to embed it into hardware for real-
time in-car video analysis to detect and track vehicles ahead for safety, auto-driving, and target 
tracing 

Bhaskar et al. (2014) aimed to develop an automatic counting system that counts the number of 
vehicles passing by a spot during a particular period.  They proposed the use of a Gaussian 
mixture model and blob detection methods.  They first differentiated the foreground from the 
background in frames. Then they developed a foreground detector to detect vehicles and drew 
rectangular boxes around every detected object. To detect the moving objects correctly, they 
applied morphological operations. They obtained higher than 91% average accuracy in detection 
and counting. 
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Gupte et al. (2002) developed algorithms for vision-based localization and classification of 
vehicles in monocular image sequences of traffic scenes recorded by a stationary camera. Their 
proposed system consists of six stages.  Stage 1 is segmentation, which separates vehicles from 
the background in the scene. Stage 2 is region tracking which tracks regions over a sequence of 
images using a spatial matching method.  Stage 3 is the recovery of vehicle parameters, which 
uses information about the camera’s location and makes use of the fact that in a traffic scene, all 
motion is along the ground plane. Stage 4 is vehicle identification which assumed that a vehicle 
may be made up of multiple regions and groups the tracked regions from the previous stage into 
vehicles. Stage 5 is vehicle tracking. Recognizing that a vehicle may consist of multiple regions 
and a single region might correspond to multiple vehicles, their system tracks vehicles at two 
levels: the region level and the vehicle level.  Lastly, stage 6 is vehicle classification; vehicles 
that have been detected and tracked are classified.  Their system was able to track and classify 
most vehicles successfully. In a 20-minute sequence of freeway traffic, 90% of the vehicles were 
correctly detected and tracked. Of these correctly tracked vehicles, 70% of the vehicles were 
correctly classified. 

Avery et al. (2004) developed an image processing algorithm for length-based vehicle 
classification using an image stream captured by an uncalibrated video camera.  The basis of 
their algorithm is to relatively compare vehicle lengths to each other to estimate truck volumes 
and eliminate the need for complicated system calibration. Like other studies, their system 
consists of two distinct processes: background extraction and vehicle detection.  Their vehicle 
detection scheme utilizes a registration line. When a vehicle exits the registration line 
corresponding to the longitudinal line (that is, the first frame a registration line is unoccupied 
after being occupied for at least one frame), the length classification algorithm is run to measure 
the length of the vehicle in pixels. This makes the lengths of all the vehicles in a lane be 
measured at almost the same starting point so that the measured lengths are comparable.  The 
length algorithm merely steps along the longitudinal line counting the number of different pixels. 
This length is the length in a projected plane; it does not represent the actual length of the 
vehicle. Results showed their system was able to classify vehicles with 98% accuracy and trucks 
with 92% accuracy. 

Mithun et al. (2012) proposed a novel detection and classification method using multiple time-
spatial images (TSIs), each obtained from a virtual detection line on the frames of a video.  The 
authors found that the use of multiple TSIs provided the opportunity to identify the latent 
occlusions among the vehicles and to reduce the dependencies of the pixel intensities between 
the still and moving objects to increase the accuracy of detection performance as well as to 
achieve an improved classification performance.  To identify the class of a particular vehicle, 
they used a two-step k-nearest neighborhood classification scheme.  In the first step, vehicles are 
grouped into one of the four broad classes, namely 2W, 3W, 4W, and 6W.  These classes roughly 
indicate the relative size of the vehicles.  In the second step, each of these broad classes is further 
grouped into a particular type of vehicle among those available in the traffic. Extensive 
experimentations were carried out in vehicular traffics of varying environments to evaluate the 
detection and classification performance of the proposed method, as compared with the existing 
methods. Experimental results demonstrated that their proposed method provides a significant 
improvement in vehicle counting and classification accuracy as compared to other methods. 
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Mishra et al. (2013) developed a real‑time algorithm for detecting and classifying different 
categories of vehicles in a heterogeneous traffic video. The processing of the video was done in 
four steps: camera calibration, vehicle detection, speed estimation, and classification. Vehicle 
detection was achieved by using background subtraction and blob tracking method.  The speed 
of the detected vehicle was estimated by utilizing virtual start and stop line markers and 
calibration parameters. Vehicle classification was done by extracting multiple features of the 
detected vehicles which serve as input to a support vector machine-based classifier.  A 
histogram‑based nonlinear kernel was used in the classifier. The proposed kernel‑based 
classifier was compared to other kernels, namely Gaussian radial basis function kernel and 
polynomial kernel. Their model development and testing used 50% of 9,360 images for training 
and the rest for testing. The classification results indicate that their proposed kernel achieved the 
highest accuracy rate (89%) for heavy motor vehicles and light motor vehicles. 

Sowjanya and Chakravarthy (2013) aimed to develop a robust traffic surveillance system for 
vehicle counting and classification.  They adopted a clustering-based feature, called a fuzzy color 
histogram, which has the ability to greatly attenuate color variations generated by background 
motions while still highlighting moving objects.  Their system first used the consecutive 
neighboring frame difference to detect the moving regions from the highway scene. Then 
morphological operations are used to remove the shadow noise and to detect the moving objects. 
After vehicle detection, a region-based vehicle tracking method is used for building the 
correspondence between vehicles detected at different time instants.  Parameters such as aspect 
ratio and compactness were used to classify vehicles.  Experimental results demonstrated the 
effectiveness of their approach for background subtraction in dynamic texture scenes compared 
to several other methods proposed in the literature. 

Salvi (2012) proposed an automated vehicle counting system based on blob analysis for traffic 
surveillance. Their proposed algorithm is composed of five steps: background subtraction, blob 
detection, blob analysis, blob tracking, and vehicle counting.  A vehicle was modeled as a 
rectangular patch and classified via blob analysis. Meaningful features were extracted by 
analyzing the blob of vehicles. Tracking of moving targets was achieved by comparing the 
extracted features and measuring the minimal distance between consecutive frames. The system 
was tested under different situations (bidirectional and unidirectional flow).  The evaluation 
consists of comparing the automatic count of vehicles in videos against the manual count 
(ground truth). The detection accuracy was found to be 98.9% on average.  It should be noted 
that their system does not classify vehicles. 

Betke et al. (2000) proposed a real-time system that analyzes color videos taken from a forward-
looking video camera in a car driving on a highway.  Their system used a combination of color, 
edge, and motion information to recognize and track the road boundaries, lane markings and 
other vehicles on the road. Cars are recognized by matching templates that are cropped from the 
input data online and by detecting highway scene features and evaluating how they relate to each 
other. Cars are also detected by temporal differencing and by tracking motion parameters that are 
typical for cars. Experimental results using thousands of image frames demonstrated that their 
system is able to produce robust, real-time car detection and tracking.  The authors noted that 
their system did not perform well in situations when there is low contrast between the cars and 
the background. Also, it did not perform well at night on city expressways when there are many 
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city lights in the background. In these situations, their system has problems finding vehicle 
outlines and distinguishing vehicles on the road from obstacles in the background. 

Chantakamo (2015) proposed a method for vehicle recognition using video data from 
surveillance cameras.  First, they extracted a set of images from videos using a top-front view. 
Their algorithm extracts RGB data from images and sets the initial threshold value for 
classification. Then their developed vision-based algorithm is applied to recognize and classify 
the size and color of vehicles in the images. Blob analysis was used as feature detection to 
categorize the vehicle type. The Euclidean distance was applied to extract the color of the car 
body. Their system can recognize several types of vehicles such as cars, pickups, and trucks. 
Experimental results indicated that their vehicle detection accuracy was 82% and their vehicle 
classification accuracy was 80%. 

2.4 Vehicle detection and classification using CNN methods  

Adu-Gyamfi et al. (2017) proposed a video-based vehicle detection system that classified a 
vehicle as one of seven groups using a Deep Convolutional Neural Network (DCNN); some of 
the FHWA’s 13 vehicle classes were combined.  Their proposed system decoupled object 
recognition into two main tasks: localization and classification. The localization task generated 
class-independent region proposals for each video frame, and the classification task used the 
DCNN to extract feature descriptors for each proposed region.  Lastly, their system scored and 
classified the proposed regions by using a linear support vector machines template on the feature 
descriptors.  The accuracy of their system was found to vary by vehicle class. Passenger cars and 
SUVs were classified correctly 95% of the time, and single-unit, single-trailer, and double-trailer 
trucks were classified correctly between 92% and 94% of the time. 

Hu et al. (2018) proposed a Scale-Insensitive convolutional neural Network (SINet) for fast 
detection of vehicles with a large variance of scales.  They first used a context-aware region of 
interest pooling to maintain the contextual information and original structure of small-scale 
objects. Then they used a multi-branch decision network to minimize the intra-class distance of 
features.  The authors stated that these lightweight techniques bring zero extra time complexity 
but significant detection accuracy improvement. Their SINet achieved state-of-the-art 
performance in terms of accuracy and speed (up to 37 FPS) on the KITTI benchmark and a new 
highway dataset, which contained a large variance of scales and extremely small objects; the 
KITTI dataset is a widely used benchmark for vehicle detection algorithms with 7,481 images of 
various scales of vehicles in different scenes and 7,518 images for testing.  The average accuracy 
was 89% for classifying three vehicle classes, namely cars, busses, and vans.  

Zhou et al. (2016) sought to use a Deep Neural Network (DNN) for vehicle detection and 
classification using rear-view images, captured by a static road camera from a distance along a 
multi-lane highway. They proposed a combination of approaches to use DNN architectures, 
building around using the higher layers of a DNN trained on a specific large, labeled dataset. 
For detection, they fine-tuned a DNN detection model, and for classification, they used both 
fine-tuning and feature-extraction methods (i.e., AlexNet).  Additionally, they proposed methods 
to use scene transformation and late fusion techniques for classification in poor lighting 
conditions and achieved promising results without changing the classification model. The 
authors stated that their classification results outperformed state-of-the-art. 
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Guo et al. (2017) proposed a model that recognizes motion-blurred vehicle images.  The dataset 
used consisted of 40,749 images combining side, frontal, and rear views.  It was divided into 66 
categories. The classification accuracy of the GoogleNet model using the blurred images 
resulted in a classification accuracy of 94.99%, 38.77%, 2.1%, and 0.93% for blur kernel sizes of 
0, 5, 11 and 21. To improve the results with blurred images, the authors modified the input data 
layer of the GoogleNet by generating random motion blur to the images in the training process. 
The results for the same kernel sizes were notably better at 98.37%, 85.22%, 84.98% and 86.5%, 
respectively. Similarly, the authors tested the effectiveness of incorporating blur into the training 
data for different input image sizes.  The accuracies obtained were 9.55%, 66.71%, and 94.99% 
for 64x64,128x128 and 256x256 image sizes, respectively. The results with blur incorporated 
into training images had accuracies of 91.85%, 98.02%, and 98.37%, respectively. These results 
showed that their proposed method outperformed the traditional approach of training directly 
with CNN. 

Kim and Lim (2017) proposed a new vehicle type classification scheme for the traffic 
surveillance system. They proposed four concepts to improve the performance of CNN on 
images that have different resolutions from multi-viewpoints.  These concepts include Deep 
Learning method, bagging method, data augmentation, and post-processing.  They combined 
these schemes to build a novel vehicle type classification system.  Their system showed 97.84% 
classification accuracy on the 103,833 images in the classification dataset.   

Ji et al. (2020) proposed a new Faster R-CNN model with Domain Adaptation (DA) to improve 
vehicle detection at nighttime. The key element of their work is to make maximum use of 
labeled daytime images (Source Domain) to help the vehicle detection in unlabeled nighttime 
images (Target Domain).  To evaluate their model, they created a new dataset, named CAU-
UTRGV Benchmark, and manually labeled the images.  The results indicated that the traditional 
Faster R- CNN obtained an F-measure of 82.84% on the nighttime vehicle detection, while their 
proposed method (Faster R-CNN+DA) achieved an F-measure of 86.39% on the nighttime 
vehicle detection. 

Chen et al. (2018) proposed a novel model based on the AdaBoost algorithm and deep 
convolutional neural networks (CNNs) to classify five distinct groups of vehicles. Their deep 
CNN model was inspired by VGGNet and AlexNet to directly extract the features of vehicle 
images.  The output layer of their CNN model was taken as the base learner of the AdaBoost 
algorithm.  The results showed that their proposed model attained a classification accuracy of 
99.50% on the test dataset and took only 28 milliseconds to classify an image. In addition to 
being fast, their proposed deep CNN-based feature extractor has fewer parameters, and thereby, 
uses much smaller storage resources as compared with the state-of-the-art CNN models.  

Hasnat et al. (2018) proposed a new vehicle classification method for automatic toll collection. 
Their method used a set of CNN models, followed by the Gradient Boosting based classifier to 
fuse the continuous class probabilities with the discrete class labels. The evaluation of their 
method used a dataset collected from the toll collection cameras at various points of the VINCI 
Autoroutes French network, and the results showed that their method outperformed the existing 
automatic toll collection system: 99.02% accuracy compared to 52.77%. 
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Jo et al. (2018) proposed a transfer learning-based vehicle classification from the CNN pre-
trained on a large-scale dataset. Transfer learning is a technique that applies previously learned 
knowledge to new datasets. The authors stated that transfer learning can achieve better 
performance with a relatively small dataset.  This is because a major assumption of CNN models 
is that the training and future data must have the same feature space. However, in many real-
world applications, this assumption may not hold.  In such cases, knowledge transfer, if done 
successfully, would greatly improve the performance of learning by avoiding expensive data-
labeling efforts. Jo et al.’s proposed system has two stages. In the first stage, the vehicle area is 
detected on the roadway using Haar-like features.  In the second stage, the transfer-learning 
based vehicle classification model classifies vehicles.  In the transfer learning, the earlier layers 
of GoogLeNet pre-trained on ILSVRC-2012 (ImageNet Large Scale Visual Recognition 
Challenge 2012) are fixed and gradients are backpropagated only through the higher-level 
portion with the vehicle dataset.  Experimental results showed that their proposed system 
achieved a classification accuracy of 98.3%, which is 32.6% higher than that of the support 
vector machine without transfer learning. 

Yu et al. (2017) proposed a model for fine-grained vehicle classification based on deep learning 
to handle complicated transportation scenes. Their model consists of two parts: vehicle detection 
and vehicle fine-grained detection and classification model.  Faster Region-based CNN (R-CNN) 
method was adopted in the vehicle detection model to extract single-vehicle images from an 
image with a cluttered background that may contain serval vehicles.  Then an image that contains 
only one vehicle was fed into a CNN model to produce a feature, and lastly, a joint Bayesian 
network was used to implement the fine-grained classification process. Experiments showed that 
their system was able to recognize a vehicle’s make and model from transportation images, with 
a detection accuracy of 85% and classification accuracy of 89%. 

Table 2-1 lists those studies with a similar objective as this study, which is to use a CNN model 
to classify vehicles traversing on a highway as captured on a video.  The number of layers, filter 
size and optimizer were used to guide the development of this project’s CNN models.  That is, 
various combinations of these parameters were evaluated, and the combination that yielded the 
highest training classification accuracy was selected for evaluation.  The chosen parameters are 
provided in the last row of Table 2-1.  Note that this study did not explore different numbers of 
vehicle groups. The use of four vehicle groups was a requirement specified by the SCDOT. 

Table 2-1. Summary of prior studies that used CNN for vehicle classification 

Author (year) 
Number of 

Layers 

Filter 

Size 

Number of 

Vehicle Groups 

Classification 

Accuracy 

Adu-Gyamfi et al. (2017) 5 layers 11x11 7 94% 
Kim and Lim (2017) 5 layers 3x3 11 98% 

Chen et al. (2018) 12 layers 3x3 5 99% 
Hasnat et al. (2018) 42 layers 7x7 5 99% 

Yu et al. (2017) 5 layers 3x3 
73 vehicle makes and 
208 vehicle models 

89% 

This project 4 layers 9x9 4 96% 
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2.5 State DOTs Survey 

As part of this study, an online survey was conducted to understand how state DOTs are using 
video-based systems to collect vehicle and bike/ped data.  The survey was distributed to other 
state DOTs on May 15, 2019, and a response was requested by June 14, 2019.  A total of 19 state 
DOTs responded to the survey, including the SCDOT.  Two departments within Nevada DOT 
completed the survey, and New Mexico's response was not included as they do not use video-
based systems. Therefore, there are a total of 19 responses.  The following summary first lists 
the questions in italics followed by a summary of the responses. 

1. Indicate the non-intrusive method(s) your agency uses to obtain vehicle classification 

and/or bike/ped data (check all that apply). 

Table 2-2. Non-intrusive methods used to obtain vehicle classification and/or bike/ped data 

Non-intrusive methods No. of Responses Percent of Responses 

Side-fire radar 9 47.4% 
Video based system 12 63.2% 
Infrared axle detector 4 21.1% 
Radar detector 4 21.1% 
Peek data collectors 1 5.3% 
Inductive loops (CLR Analytics, loop signatures) 1 5.3% 
Infrared pedestrian detectors 1 5.3% 

As shown in Table 2-2, the video-based system is the most commonly used non-intrusive method 
(63.2%) among the respondents, followed by side-fire radar (47.4%).  Infrared axle detector and 
radar detector are used by four respondents each.  Three respondents indicated “Other” and 
specified their specific technologies; these are listed in the last three rows of Table 2-2. 

2. What percentage of vehicle data is obtained via video-based systems (e.g., Miovision 

Technologies)? 

Table 2-3. Percentage of vehicle data collected using video-based systems 

Responses No. of Responses Percent of Responses 

None 8 42.1% 
< 20% 10 52.6% 
20% to 40% 1 5.3% 
40% to 60% 0 0% 
60% to 80% 0 0% 
> 80% 0 0% 
Total 19 100% 

As shown in Table 2-3, 10 respondents (52.6%) indicated that they were collecting less than 20% 
of their vehicle data using video-based systems, while eight respondents (42.1%) indicated none. 
Only one respondent was collecting more than between 20% and no respondents collected more 
than 40%. 

12 



 

 

 

 

   

  
 

 

  

 

   

 
  

 
 

  

 

 

   

 
 

 
  

 
 

3. What is the video-based system that your agency uses to collect vehicle data 

(manufacturer name and model number)? 

Table 2-4. Video-based system used to collect vehicle data 

Video-based systems No. of Responses Percent of Responses 

MioVision 11 57.9% 
Gridsmart 2 10.5% 
COUNTCam2 1 5.3% 
No response 8 42.1% 

As shown in Table 2-4, 11 respondents (57.9%) indicated that they were using the MioVision 
Scout to collect vehicle data, with two (10.5%) using the Gridsmart system, and one using the 
COUNTCam2 system.  Eight respondents (42.1%) did not respond to this question.  Note that 
some state DOTs used more than one video-based system; thus, the total number of responses is 
greater than 19. 

4. At how many sites are vehicle data being collected via video-based systems? 

Table 2-5. Number of sites where video-based systems are used 

Responses No. of Responses Percent of Responses 

< 20 7 36.8% 
20 to 100 1 5.3% 
>100 3 15.8% 
No response 8 42.1% 
Total 19 100% 

As shown in Table 2-5, seven respondents (36.8%) indicated they were collecting vehicle data 
using video-based systems at less than 20 sites, with three (15.8%) collecting between 20 and 
100, and three collecting at more than 100 sites.  Eight respondents (42.1%) did not respond to 
this question. 

5. How often are video-based systems used to collect vehicle data at each site? 

Table 2-6. Frequency of videos-based systems used at each site 

Responses No. of Responses Percent of Responses 

As needed for special situations 4 21.1% 
Annually 1 5.3% 
Continually 2 10.5% 
3-to-4-year cycle 3 15.8% 
No response 9 47.3% 
Total 19 100% 

As shown in Table 2-6, four respondents (21.1%) indicated that they were using video-based 
systems to collect vehicle data at each site “as needed for special situations,” with one (5.3%) 
collecting annually, two (10.5%) collecting continually, and three (15.8%) collecting on a 3-to-4-
year cycle. Nine respondents (47.3%) did not respond to this question. 
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6. Once the data collection is completed via the video-based system, is the vehicle 

classification performed in-house or outsourced? 

Table 2-7. Method used for classification of collected vehicle data 

Responses No. of Responses Percent of Responses 

In-house 3 15.8% 
Outsourced 8 42.1% 
No response 8 42.1% 
Total 19 100% 

As shown in table 2-7, once the vehicle data collection is completed using a video-based system, 
three respondents (15.8%) indicated that they were using an in-house system to perform the 
vehicle count and classification, whereas eight (42.1%) outsourced this work. Eight respondents 
(42.1%) did not respond to this question. 

7. What is your agency’s target accuracy rate for vehicle classification? 

Table 2-8. Target accuracy for vehicle classification 

Responses No. of Responses Percent of Responses 

No criteria 1 5.3% 
90% or better 2 10.5% 
95% or better 5 26.3% 
98% or better 3 15.8% 
No response 8 42.1% 
Total 19 100% 

As shown in table 2-8, one respondent (5.3%) indicated that it has no specific criteria for 
classification accuracy, with two (10.5%) having a 90% or better criterion, five (26.3%) having a 
95% or better criterion, and three (15.8%) having a 98% or better criterion.  Eight respondents 
(42.1%) did not respond to this question. 

8. When collecting traffic data by video-based systems, how many vehicle groups or bins 

are used by your agency? Please specify the groups/bins (e.g., bin 1 includes FHWA 

vehicle classes 1, 2 and 3). 

Table 2-9. Number of vehicle groups used for classification 

Responses No. of Responses Percent of Responses 

3 5 26.3% 
4-6 5 26.3% 
No response 9 47.4% 
Total 19 100% 

As shown in Table 2-9, five respondents (26.3%) indicated that they were using three vehicle 
groups, and with five (26.3%) using four to six groups.  Nine respondents (47.4%) did not 
respond to this question. 
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9. Is the video-based system collecting vehicle data at night? 

Table 2-10. Usage of video-based system at night 

Responses No. of Responses Percent of Responses 

Yes 9 47.4% 
No 2 10.5% 
No response 8 42.1% 
Total 19 100% 

As shown in Table 2-10, nine respondents (47.4%) indicated that they were using the video-
based system to collect vehicle data at night, and two (10.5%) did not. Eight respondents 
(42.1%) did not respond to this question. 

10. What percentage of bike/ped data are obtained via video-based systems (e.g., Miovision 

Technologies)? 

Table 2-11. Percentage of bike/ped data obtained via video-based systems 

Responses No. of Responses Percent of Responses 

<20% 7 36.8% 
20% to 40% 0 0% 
40% to 60% 0 0% 
60% to 80% 0 0% 
Not used 3 15.8% 
No response 8 42.1% 
Total 19 100% 

As shown in Table 2-11, seven respondents (36.8%) indicated that they were collecting less than 
20% of their bike/ped data using video-based systems.  Three respondents (15.8%) that they did 
not use their video-based systems to collect bike/ped data.  Eight respondents (42.1%) did not 
respond to this question. 

11. What is the video-based system that your agency uses to collect bike/ped data 

(manufacturer name and model number)? 

Table 2-12. Video-based system used to collect bike/ped data 

Video-based systems Response Count Percent of Responses 

MioVision 7 36.8% 
Gridsmart 1 5.3% 
Prototype system 1 5.3% 
No response 11 57.9% 

As shown in Table 2-12, seven respondents (36.8%) indicated that they were using the 
MioVision Scout to collect bike/ped data, with one using the Gridsmart system, and one using 
the Prototype system. Eleven respondents (57.9%) did not respond to this question.  Note that 
some state DOTs used more than one video-based system; thus, the total number of responses is 
greater than 19. 
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12. At how many sites are bike/ped data being collected via video-based systems? 

Table 2-13. Number of bike/ped sites where video-based systems are used 

Responses No. of Responses Percent of Responses 

< 20 6 31.6% 
< 200 2 10.5% 
No response 11 57.9% 
Total 19 100% 

As shown in Table 2-13, six respondents (31.6%) indicated they were collecting bike/ped data at 
less than 20 sites using their video-based systems, with two (10.5%) collecting at more than 20 
but less than 200 sites. Eleven respondents (57.9%) did not respond to this question.   

13. How often are video-based systems used to collect bike/ped data at each site? 

Table 2-14. Frequency of videos-based systems used at each bike/ped site 

Responses No. of Responses Percent of Responses 

As needed for special situations 5 26.2% 
Annually 1 5.3% 
Continually 1 5.3% 
3-to-4-year cycle 1 5.3% 
No response 11 57.9% 
Total 19 100% 

As shown in Table 2-14, five respondents (26.2%) indicated that they were using their video-
based systems to collect bike/ped data at each site “as needed for special situations,” with one 
(5.3%) collecting annually, one (5.3%) collecting continually, and one (5.3%) collecting on a 3-
to-4-year cycle. Eleven respondents (57.9%) did not respond to this question.  

14. Once the data collection is completed via the video-based system, is the bike/ped video 

processing done in-house or outsourced? 

Table 2-15. Method used for classification of collected bike/ped data 

Responses No. of Responses Percent of Responses 

In-house 5 26.3% 
Outsourced 3 15.8% 
No response 11 57.9% 
Total 19 100% 

As shown in table 2-15, once the bike/ped data collection is completed using a video-based 
system, five respondents (26.3%) indicated that they were using an in-house system to perform 
the bike/ped count and classification, whereas three (15.8%) outsourced this work. Eleven 
respondents (57.9%) did not respond to this question. 
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15. What is your agency’s target accuracy rate for bike/ped count? 

Table 2-16. Target accuracy for bike/ped count 

Responses No. of Responses Percent of Responses 

No criteria 1 5.3% 
90% or better 1 5.3% 
95% or better 4 21% 
98% or better 1 5.3% 
No response 12 63.1% 
Total 19 100% 

As shown in table 2-16, one respondent (5.3%) indicated that it has no specific criteria for 
bike/ped counting and classification accuracy, with one (5.3%) having a 90% or better criterion, 
four (21%) having a 95% or better criterion, and one (5.3%) having a 98% or better criterion. 
Twelve respondents (63.1%) did not respond to this question. 

16. Is the video-based system collecting bike/ped data at night? 

Table 2-17. Usage of video-based system to collect bike/ped data at night 

Responses No. of Responses Percent of Responses 

Yes 7 36.8% 
No 1 5.3% 
No response 11 57.9% 
Total 19 100% 

As shown in Table 2-17, seven respondents (36.8%) indicated that they were using their video-
based systems to collect bike/ped data at night, and one (5.3%) did not. Eleven respondents 
(57.9%) did not respond to this question. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

The method utilized in this project consists of both hardware and software.  The hardware 
consists of either a visible camera mounted onto a road-side pole, or an infrared camera mounted 
onto a solar-powered trailer that is positioned approximately six feet from the edge of the road. 
The developed software takes the visible or thermal videos as input and outputs the time and type 
of vehicle detected in the video, as well as an overall count of each vehicle group.  The 
identification of each vehicle was made more accurate by mapping object positions (at every two 
frames) into a track for determination of whether such a trajectory resembles one from a vehicle. 
The classification of each vehicle was made more accurate by recording the vehicle’s 
classification at every two frames and then selecting the one that has the highest count (i.e., 
mode). 

3.2 Hardware 

In the first part of the project, visible (referred to as RGB hereafter) videos collected previously 
by the SCDOT using the Miovision Scout were used to train the CNN model.  When it became 
apparent that the RGB videos are unsuitable for nighttime use, a thermal camera was procured, 
assembled, and deployed at various locations to obtain the necessary data. 

3.2.1 Miovision camera set up 
The Miovision Scout as shown in Figure 3-1 was mounted onto telephone poles, about 20 feet 
above the ground, by the SCDOT to collect traffic data.  The camera was aimed in the direction 
of traffic, and thus, provided both the rear and side view of vehicles as they passed the 
observation point. Given that the battery life of the Miovision Scout lasts up to seven days, no 
external power was needed for the typical 48-hour data collection.  The resolution of the Scout 
videos is 720 by 480 pixels, and the frame rate is 30 frames per second. 

Figure 3-1. Miovision Scout (source: Miovision.com) 

3.2.2 FLIR thermal camera set up 
The TraficSense2 Dual camera was procured from FLIR midway through the project.  Unlike 
other off-the-shelf cameras, the FLIR TrafiSense2 Dual camera (referred to as thermal camera 
hereafter) required connections to other components in order for it to work.  As shown in Figure 
3-2, the thermal camera is connected to a PoE (Power over Ethernet) module.  It is also 
connected to a Raspberry Pi via a network switch; the Raspberry Pi runs a recorder software that 
stores the video data onto an external hard drive.  The recorder software is launched and 
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configured using a laptop. Once configured, the laptop does not need to be connected to the 
thermal camera.  Instructions for using the recording software for data collection are provided in 
Appendix A. 

To power the thermal camera via the PoE, a solar-powered trailer was procured as part of this 
project. The following are the specifications of the trailer that was purchased. 

 20 feet tall crank up mast 
 Lead-acid batteries to provide ≥ 100 watts 
 Solar panels and power regulator to provide continuous power  
 Extendable jack stands 
 Standard trailer hitch for towing behind a light-duty pick up or SUV 
 Lockable metal battery box 
 On-board battery charger 
 Large plastic NEMA Box large enough to house thermal camera components 
 Exterior dimensions of pelican case (in inches): length=21.96, width=13.97, height=8.98 
 A sturdy platform near the top of the mast to mount and secure FLIR TrafiSense2 Dual 

camera 

Figure 3-3 shows how the thermal camera was mounted onto the trailer during one of the field 
deployments. For this particular deployment, the camera was mounted at 18 feet above the 
ground and 6 feet away from the edge of the road.  To minimize camera motion due to wind, the 
platform to which the camera is affixed was secured by two cables, one on each side to the base 
(see Figure 3-3). Instructions for setting up the trailer are provided in Appendix B.  Although the 
FLIR TrafiSense2 Dual camera can record traffic data using both of its visible and thermal 
cameras simultaneously, only the thermal camera was used in this project to allow for the longer 
recording of the video. Each thermal video segment is 10 minutes long.  Thus, for a 48-hour 
count, there will be 288 10-minute video files.  The resolution of the thermal videos is 640 by 
480 pixels, and the frame rate is 30 frames per second.  

Figure 3-2. FLIR TrafiSense2 Dual camera components and assembly 
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camera platform to 
trailer to minimize 
camera motion 

Figure 3-3. Thermal camera and trailer at data collection site 

3.3 Video Processing 

The goal of video processing is for an observer, human or machine, to extract useful information 
about the scene being imaged (Kang, 2007). In this project, the interest was to have the machine 
automatically count and classify vehicles in a video.  To accomplish this, several video 
processing operations were implemented. The technical details of these operations are provided 
in subsequent sections. 

3.3.1 Vehicle detection 
The term “vehicle detection” used in this report and hereafter refers to the task of detecting 
moving vehicles in a video. In the literature, this task is sometimes referred to as localization 
and sometimes as detection. Since the term detection is more easily understood, it is used here 
instead of localization.  In this project, vehicle detection is accomplished using a standard 
procedure as shown in Figure 3-4.  The procedure requires an input sequence which is a color or 
grayscale traffic video.  The first step in detecting the vehicles is to perform motion object 
segmentation which involves determining whether individual pixels are part of the background 
or the foreground. The background of a typical traffic video generally consists of roads, 
buildings, trees, and poles.  These fixed objects have the same pixel positions from frame to 
frame or have very slight changes to them from frame to frame. Camera motion, due to high 
winds, can cause background objects to appear to have motion.  Any foreground objects that are 
deemed not to be a vehicle due to invalid trajectories are removed by the developed tracking 
algorithm (discussed in Section 3.3.5).   
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3.3.2 Motion object segmentation 
The sequence of operations used to identify background versus foreground objects is as follows. 
First, background initialization is performed using a fixed number of frames to build a statistical 
model of the background pixels. Next, foreground detection is performed by subtracting each 
current frame from the background model.  Those pixels that are statistically different from the 
background are deemed as foreground. The last step is background maintenance, which involves 
analyzing the current frame to update the background statistical model.  The second and third 
steps are repeated for each frame in the video.  In this project, MATLAB’s Foreground Detection 
function (MathWorks, 2021) was used to perform these two steps.  The specific model used by 
MATLAB for this procedure is the Gaussian Mixture Model (GMM).  Given an input sequence 
shown in Figure 3-5(a), the outcome of using the GMM to separate the foreground from the 
background is shown in Figure 3-5(b). 

Figure 3-4. Detection system overview (Source: Salvi, 2012) 

3.3.3 Blob detection 
The motion object segmentation step identified foreground pixels in the current frame. In the 
next step, blob detection, these foreground pixels are grouped together by a contour detection 
algorithm.  In this project, MATLAB’s Deep Learning Object Detector algorithm was used.  The 
contour detection algorithm groups the individual pixels into disconnected classes, and then finds 
the contours, in the form of a bounding box, surrounding each class.  Each class is marked as a 
candidate blob, and these candidate blobs are then checked for their sizes.  Blobs that have areas 
less than 200 squared pixels or greater than 32,000 squared pixels are removed; these parameter 
values were identified as near optimal through a trial-and-error process. 

3.3.4 Blob analysis 
The blob analysis step takes the remaining blobs with their positions from the previous step, as 
input, and identifies which blobs in the current frame belong to the same vehicle.  This step 
involves comparing the positions of the blobs in the current frame to those in the previous frame 
using the k-Means clustering technique using the centroid of each blob’s bounding box.  In this 
project, MATLAB’s Blob Analysis function was used to accomplish both the blob detection and 
blob analysis steps. The visual output of the blob analysis step is shown in Figure 3-5(c).  In this 
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project, the frame numbers, blob IDs, bounding boxes’ widths and lengths, bounding boxes’ 
centroid coordinates, and vehicle group classifications are stored at every two frames.  This 
information is used in the tracking step to improve the counting of vehicles.  

Figure 3-5. (a) Video frame, (b) background subtraction, and (c) blob analysis 

Lastly, the tracking algorithm is run after the video is processed.  The tracking algorithm 
constructs object tracks to enable the determination of whether a detected foreground object is a 
vehicle or not.  An object’s trajectory is simply a plot of its centroid coordinates from the frame 
it entered the region of interest to the frame that it exited the region of interest.  The centroids’ 
pixel coordinates represent the physical locations of the objects.  These coordinates are 
represented as nodes, and if two nodes belong to the same object then they are connected by a 
link. Thus, an object’s trajectory indicates the path or track of the object.  Figure 3-6 shows a 
sample set of tracks. Note that the plotted tracks do not correspond with the movement of 
vehicles shown in Figure 3-5. Specifically, the tracks in Figure 3-6 move in the south-east 
direction, whereas vehicles in Figure 3-5 move in the north-east direction.  The reason is due to 
the difference in origin.  In Figure 3-5, the origin is located on the upper-left corner, whereas in 
Figure 3-6, the origin is located in the bottom-left corner.   

Figure 3-6. Vehicles tracks 
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The logic for determining whether an object is a vehicle or not is algorithmically performed by 
examining its track.  If a track remains after the following operations, then it is a valid track, and 
therefore, that object must be a vehicle.   

 Operation 1: If a track has a link that goes against the direction of traffic flow, then that 
link is removed.  As a result, the track is split into two.  This process is repeated for all 
links in a track. 

 Operation 2: If the starting node of a track is within 15 frames of another track’s starting 
node and these two tracks have similar angles, then the two tracks are joined.  This 
process is repeated for all tracks. 

 Operation 3: If a track’s total number of nodes is lower than the 35th percentile of the 
numbers of nodes in all tracks, then it is removed.  The reason for this operation is that 
short tracks are unlikely to be those of a vehicle.  It should be noted that the k-means 
clustering algorithm was also evaluated, but it did not yield a better detection accuracy. 

 Operation 4: If a track’s starting node is not in the upper half of the region of interest, 
then it is removed. The reason for this operation is that a valid track cannot suddenly 
appear in the middle of the region of interest. 

The remaining number of tracks is the number of vehicles. The classification of the vehicle 
group for each track is determined by using the mode of the classification of the image of each 
node in the track. In other words, the vehicle group that is classified most often for the object, 
among the nodes in the track, is selected as its vehicle group for the track. 

3.3.5 Vehicle classification 
Figure 3-4 shows the standard steps typically taken for vehicle counting applications.  In this 
project, the classification of vehicles was also needed.  Thus, steps in Figure 3-4 were modified 
slightly. To determine which of the four vehicle groups a detected foreground object is, a CNN 
model is used for classification. This step is performed after Blob Detection.  Four types of 
layers were used to build the convolutional network architecture: Convolutional + ReLU Layer, 
Pooling Layer, Fully Connected Layer, and SoftMax Layer.  MATLAB was used to implement 
the CNN model. Figure 3-7 provides an overview of the CNN model building steps. 

For this project, the input to the CNN model is a 72x72x3 image; that is an image with a width of 
72 pixels, height of 72 pixels, and three-color channels: Red, Green, and Blue.  These are images 
within the bounding boxes shown in Figure 3-5(c).  If an image’s size is smaller than 72x72, then 
white spaces are padded around the image. Next, a convolutional layer with 20 filters is applied. 
This is the first step of the Feature Learning component shown in Figure 3-7. Each filter, 9x9 in 
size, activates certain features from the images (e.g., edge detect, headlights detect, tires detect). 
For this reason, the filter is also known as Feature Detector or Kernel. The result of the 
convolution process is 20 feature maps because 20 filters are specified.  Next, the Rectified 
Linear Unit (ReLU) activation function is applied to break up any linear progression of pixel 
colors because images are highly non-linear. Moreover, ReLU allows for faster and more 
effective training by mapping negative values to zero and maintaining positive values.  Through 
this activation function, only the activated features are carried forward into the next layer. Next, 
the pooling function is applied. This project uses max pooling with a size of 2x2. This step 
involves taking a box of 2x2 pixels from the Feature Map created previously, finding the 
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maximum value, and outputting it to the Pooled Feature Map.  Then the box is moved to the next 
2x2 portion of the Feature Map to find its maximum pixel value, and this step is repeated for the 
entire feature map. A benefit of pooling is that it reduces the dimensionality of the image and 
reduces the number of parameters that the network needs to learn. The sequence of operations 
(convolution, RELU, and pooling) is repeated four times.  The only difference in these iterations 
is that the fourth convolutional layer has 40 filters instead of 20.  After the model learned the 
image features, the architecture of the CNN shifts to classification.  The fully connected layer is 
applied to output a vector of K dimensions where K is the number of classes that the network 
will be able to predict.  In this project, K = 5 (four vehicle groups and background).  The K 
vector contains the probabilities for each class of any image being classified.  The final layer of 
the CNN architecture uses the softmax function to provide the classification output.  The softmax 
function is a generalization of the logistic function, and it is used to ensure that the predicted 
probabilities of all classes add up to 1. 

Figure 3-7. CNN architecture (source: MathWorks, 2021) 

3.3.6 CNN model training 
In developing the convolutional network architecture discussed in the previous section, various 
parameters were evaluated to produce the highest possible classification accuracy.  These include 
the number of layers, number of filters, and filter size.  For our datasets, the best performing 
combination required 4 layers, 20 filters for the first three convolutional layers, 40 filters for the 
fourth convolutional layer, and a 9x9 pixel filter size.  The CNN model was then trained using 
manually labeled images (discussed in Section 3.5).  MATLAB allows the user to define the 
global training parameters to converge faster and/or obtain higher classification accuracy.  In 
general, a model’s convergence speed and accuracy are dependent on the following aspects. 

 The architecture of the network 
o The number of layers 
o The number of parameters in each layer 
o Activation functions used 
o Other architectural details 

 The dataset and the complexity of the problem 
 Learning algorithm 
 Hyperparameters 

o Learning rate 
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o Dropout rate 
o Weight decay 

 Loss function 
o Weight initialization 
o Random 

 Pre-trained model 

In this project, the focus was on increasing the accuracy of the CNN model.  The model training 
time was not a concern. Two parameters were found to have a significant impact on the CNN 
model classification accuracy: filter size and learning rate.  Three different filter sizes were 
evaluated: 3x3, 6x6, and 9x9 pixels.  Similarly, three different learning rates were evaluated: 0.1, 
0.01, 0.001. The optimal values for these parameters are 9x9 pixels for filter size and 0.001 for 
learning rate. 

3.4 Software 

To facilitate the use of the developed code for video processing, a stand-alone application named 
DECAF (detection and classification by functional class) was developed.  Essentially, a 
Graphical User Interface (GUI) was built around the video processing functions explained in 
Sections 3.3.1 to 3.3.6. The GUI, with a pull-down menu and toolbar, allows the user to easily 
identify the folder where the to-be-processed video files are stored, draw the area (referred to as 
the region of interest) where vehicles should be detected and classified, process the videos, and 
generate reports. As shown in Figure 3-8, the use of DECAF involves three steps.  The first step 
requires the user to provide the input videos, region of interest and desired time interval for data 
to be aggregated. The second step utilizes the developed video processing functions to detect 
and classify vehicles.  The final step enables the user to view the results, either in a PDF report 
with summarized statistics or in a CSV file with vehicle-by-vehicle information. A user’s 
manual for DECAF is provided in Appendix C. 

3.5 Data generation 

A simplified version of DECAF was used to generate images to train and validate the developed 
CNN model. Specifically, at every frame of the video, the detected foreground objects within 
the bounding boxes are outputted as 72x72 pixel images. If an image’s size is smaller than 
72x72, then white spaces were padded around the image.  These images were outputted into their 
respective categories/folders based on their classified vehicle groups.  In this project, four 
vehicle groups are used as specified by the SCDOT.  These four vehicle groups as they relate to 
the FHWA's 13 vehicle category classification are as follows. 

 Vehicle group 1: FWHA Class 1 vehicles 
 Vehicle group 2: FHWA Classes 2-3 vehicles 
 Vehicle group 3: FHWA Classes 4-5 vehicles 
 Vehicle group 4: FHWA Classes 6-13 vehicles 

Before the images were used for training and validating the CNN model, they were manually 
reviewed and placed into the correct categories/folders.  That is, if an image was classified by the 
model as group 1, but it is actually a group 2 vehicle, then that image was moved from the 
category/group 1 to the category/group 2 folder. This process is repeated for every image 
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generated from a video. Images which the researchers could not determine their vehicle groups, 
due to poor image quality, were removed.  Images that contain only the background were placed 
in a separate category/folder called background; background images are sometimes detected as 
foreground objects due to camera motion or changing lighting conditions.   

Input via GUI 

 Traffic videos 
 Region of interest 

 Desired data aggregation interval 

Video Processing 

 Motion object segmentation 
 Blob detection 

 Object classification 
 Blob analysis 

 Tracking 
 Counting 

 

 

 

  

 

  
 

Ouput via GUI 

 PDF report with summary statistics 
 CSV report with vehicle-by-vehicle information 

Figure 3-8. DECAF primary elements and functionalities 
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CHAPTER 4: FINDINGS AND DISCUSSIONS 

4.1 Introduction 

This project developed three different CNN models.  At the start of the project, it was envisioned 
that two models will be needed, one for daytime and one for nighttime, using the RGB traffic 
video data that the SCDOT had collected.  As shown below, the classification results of the 
nighttime CNN model were poor despite attempts to enhance the nighttime images prior to using 
them for model training, as well as attempts to enhance the convolutional network architecture 
for the nighttime model.  For these reasons, thermal traffic video data were collected and used to 
develop the thermal CNN model.  The results, when used within DECAF, yielded a counting and 
classification accuracy of at least 95%, which was the aim of this project.  Where the detection 
region is drawn, relative to the camera position, was found to have a significant effect on the 
detection and classification results. The trailer offset distance was also found to have a 
significant effect on the results.  Their results and guidelines are provided in subsequent sections. 

4.2 Effect of placement of the region of interest on counting accuracy 

Due to the camera angle and height, it was noticed that the location and size of the region of 
interest (ROI), relative to the camera position, affected the counting and classification 
accuracies. Three commonly used approaches by the researchers were evaluated.  The first 
approach is to draw the ROI to cover as large an area as possible as shown in Figure 4-1(a).  The 
benefit of this approach is to provide more frames to detect and track the vehicles.  A second 
approach is to draw the ROI much further downstream as shown in Figure 4-1(b).  The benefit 
of this approach is that it provides a vantage point where vehicles in each lane are clearly visible 
(i.e., vehicles in the left-most lane are not blocked by a larger vehicle in the middle lane).  The 
third approach is to draw the ROI to cover the middle third of the lanes as shown in Figure 4-
1(c). The benefit of this approach is that it provides the greatest change in the angle/slope of the 
tracks. To determine which approach produces the highest counting accuracy, ten videos were 
randomly selected for the evaluation, with each video containing at least 10 vehicles.  The results 
are shown in Table 4-1. 

 Figure 4-1. Different methods to draw the region of interest 
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Table 4-1. Counting accuracies for different ROI-drawn methods 

Videos 
Method 1 

accuracy (%) 

Method 2 

accuracy (%) 

Method 3 

accuracy (%) 

Video 1 41.2 88.2 47.1 
Video 2 80 90 80 
Video 3 78.9 89.5 94.7 
Video 4 65.5 96.6 72.4 
Video 5 24.1 93.5 15.7 
Video 6 25 92.1 60.5 
Video 7 78.9 89.5 63.2 
Video 8 84.4 97.8 82.2 
Video 9 88.9 94.4 83.3 
Video 10 95.2 95.2 95.2 
Average 66.2 92.7 69.4 

Using the results in Table 4-1, a paired t-test was performed to determine if it can be concluded 
at the 95% confidence level that the mean counting accuracy of method 2 is greater than that of 
method 1. The null and alternative hypotheses are as follows. 

H0: 1 = 2 

HA: 2 > 1 

The paired t-test was performed using the R software (R Core Team, 2021), and it returned a p-
value of 0.005125. Since the p-value is less than 0.05, the null hypothesis can be rejected.  Thus, 
it can be concluded that method 2 is better than method 1. 

Similarly, a paired t-test was performed to determine if it can be concluded at the 95% 
confidence level that the mean counting accuracy of method 2 is greater than that of method 3. 
The null and alternative hypotheses are as follows. 

H0: 2 = 3 

HA: 2 > 3 

A p-value of 0.006498 was obtained. Therefore, it can be concluded that method 2 is better than 
method 3. 

The above results indicated that method 2 is superior to methods 1 and 3.  Thus, it is the 
recommended method. All results reported below used method 2 to draw the ROI in DECAF. 

4.3 DECAF with RGB daytime CNN model results 

Using the RGB traffic video data collected by the SCDOT using Miovision cameras on multilane 
highways in 2015, a total of 314,684 daytime images was generated, reviewed, and manually 
labeled according to their actual vehicle groups.  Of these, 172,223 were selected for the training 
dataset and the remainder (142,461) were used for the test dataset.  To avoid bias in the training 
and testing of the CNN model, the images from one video or site were not included in both 

28 



 

 

   

   

  

 
 

 

        
         

      

      

      

      

      

      

 

 

datasets. That is, images from one set of videos were used for training and images from another 
set of videos were used for testing. This approach ensured that the CNN model does not see 
images in testing similar to those it was trained with.  Table 4-2 shows the number of images per 
class in the training and test datasets. 

Table 4-2. RGB daytime datasets 

Class Training Test 

Background 114,244 88,396 
Class 1 109 90 

Class 2-3 32,944 29,997 
Class 4-5 809 715 

Class 7-13 22,117 23,263 
Total 172,223 142,461 

The RGB daytime CNN model trained with the data shown in Table 4-2 yielded a classification 
accuracy of 92.70%; note that this is the training accuracy.  To test the performance of the 
model, it was utilized within DECAF.  Three RGB traffic videos with at least 50 vehicles in each 
were used for testing. The locations where these were recorded are unknown.  Therefore, these 
videos are labeled as “Site A”, “Site B”, and “Site C.”  Table 4-3 shows testing results for Site A. 
In the first column, instead of presenting the vehicle groups (1 to 4), their corresponding FHWA 
classes are listed since this information is more well known to readers.  The second and third 
columns show the results of DECAF without the tracking component.  The fourth and fifth 
columns show the results of DECAF with the tracking component.  The reason for showing the 
results with and without the tracking component is because it was the most challenging task 
intellectually and most time-consuming task to implement. It is also the most unique 
contribution of this project.  The last column shows the actual count, which was obtained by 
manually reviewing the video and manually counting  the number of vehicles in each 
classifications. 

Table 4-3. DECAF results with RGB daytime CNN model for Site A 

Classes Without tracking With tracking Actual Count 

Count Over/Under Count Over/Under 
Class 1 0 0 0 0 0 

Class 2-3 61 +12 51 +2 49 
Class 4-5 0 0 0 0 0 

Class 6-13 0 -1 0 -1 1 
Total 61 +11 51 +1 50 

Total misclassified 13 0 3 

The results in Table 4-3 indicates that without the tracking component, DECAF yielded a count 
of 61 vehicles compared to an actual count of 50.  Thus, it overcounted by 11 vehicles, resulting 
in an error of 22%. In terms of classification, it misclassified 13 vehicles, an error of 26%.  The 
misclassification error is computed by dividing the total number of vehicles misclassified by the 
actual total number of vehicles. With the tracking component, the count is over by 1 vehicle (2% 
error) and the misclassification is reduced to 3 (6% error). 
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Table 4-4. DECAF results with RGB daytime CNN model for Site B 

Classes Without tracking With tracking Actual Count 

Count Over/Under Count Over/Under 
Class 1 0 0 0 0 0 

Class 2-3 81 -4 68 -17 85 
Class 4-5 2 -1 0 -3 3 
Class 6-13 65 +45 37 +17 20 

Total 148 +40 105 -3 108 
Total misclassified 50 0 37 

The results in Table 4-4 indicate that without the tracking component, DECAF yielded a count of 
148 vehicles compared to an actual count of 108.  Thus, it overcounted by 40 vehicles, resulting 
in an error of 37%.  In terms of classification, it misclassified 50 vehicles, an error of 46%.  With 
the tracking component, the count is under by three vehicles (3% error) and the misclassification 
is reduced to 37 (34% error). Note that the reported misclassification does not reflect the fact 
that of the 68 vehicles classified as Class 2-3, some could actually be Class 6-13.  Similarly, 
some of the 37 vehicles classified as Class 6-13, some could actually be Class 2-3.  In other 
words, the researchers did not manually verify the classification of each vehicle reported by 
DECAF. The comparison is based on total actual counts and not a vehicle-by-vehicle 
comparison. 

Table 4-5. DECAF results with RGB daytime CNN model for Site C 

Classes Without tracking With tracking Actual Count 

Count Over/Under Count Over/Under 
Class 1 0 0 0 0 0 

Class 2-3 74 +16 53 -5 58 
Class 4-5 1 -1 1 -1 2 

Class 6-13 47 +31 23 +7 16 
Total 122 +46 77 +1 76 

Total misclassified 48 0 13 

The results in Table 4-5 indicates that without the tracking component, DECAF yielded a count 
of 122 vehicles compared to an actual count of 76.  Thus, it overcounted by 46 vehicles, resulting 
in an error of 60.5%. In terms of classification, it misclassified 48 vehicles, an error of 63%. 
With the tracking component, the count is over by one vehicle (1% error) and the 
misclassification is reduced to 13 (17% error). 

4.4 RGB nighttime CNN model results 

The RGB nighttime images, under poor lighting conditions, presented an insurmountable 
challenge. It was difficult to determine, even to the human eye, how many axles a truck has, as 
shown in Figure 4-2(a) and whether the vehicle is of Class 2 or 3 as shown in Figure 4-2(b). 
Therefore, after the manual review and sort process, only a small number of images remain in the 
RGB nighttime dataset (less than 5,000 images).  Due to the small sample size, the classification 
accuracy of the nighttime CNN model was well below the target 95%.  To overcome this issue, 
four different low-light image enhancement methods were explored: 1) histogram equalization 

30 



 

 

 

 

 

 

 

 

(HE), 2) adaptive histogram equalization (AHE), 3) contrast limited adaptive histogram 
equalization (CLAHE), and 4) gamma correction.   

Figure 4-2. RGB nighttime images 

The HE method aims to produce an output image with pixel values evenly distributed throughout 
the range. The AHE method operates on small regions of the image, called tiles.  Each pixel is 
transformed based on the histogram of a square surrounding the pixel.  The AHE method tends 
to overamplify noise in relatively homogeneous regions of an image. CLAHE is a variant of 
AHE designed to prevent this by limiting the amplification.  The gamma correction method 
controls the overall brightness of an image.  Figure 4-3 shows the effect of applying these four 
image enhancement methods. The intent was to use a combination of these methods to enhance 
the nighttime images to make their vehicle groups easier to distinguish for the researchers and 
subsequently the CNN model. Due to the low quality of the original images, none of the 
combinations of enhancement methods applied resulted in a better image.  For this reason, in 
consultation with the SCDOT, it was decided that thermal traffic video data should be used.   

Figure 4-3. RGB nighttime images after enhancement 
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Figure 4-4 shows thermal images of traffic as recorded by the FLIR TrafiSense2 Dual camera. 
Figure 4-4(a) shows an image of a car taken at 9 a.m. EST and Figure 4-4(b) shows an image of 
a car taken at 11 p.m. EST.  Notice that although one image was captured during the day and one 
was captured at night, there is very little difference between them visually.  Both of these images 
were taken when the temperature was cooler (less than 70 degrees).  Figure 4-4(c) shows an 
image of a vehicle taken when the temperature was much warmer (93 degrees).  Notice that the 
change in the grayscale of the pavement, from dark to light.  Collectively, Figure 4-4 shows that 
while thermal images are not affected by lighting conditions, they are affected by temperature. 

Figure 4-4. Thermal images recorded by FLIR TrafiSense2 Dual camera 

4.5 DECAF with thermal CNN model results 

The trailer and thermal camera were deployed 11 times by the research team and SCDOT staff. 
Each deployment recorded at least 24 hours of traffic.  The locations of the deployments were 
selected jointly with the SCDOT to provide a representative sample of roads where the thermal 
camera would most likely be deployed in the future.  As a result, the thermal camera was 
deployed on a primary road two times, on a secondary road seven times, and on a local road two 
times. Both of the primary roads have 6 lanes (3 lanes in each direction).  One secondary road 
has four lanes, and the rest have two lanes.  Both of the local roads have two lanes.  To increase 
the number of Class 1 (motorcycles) vehicles in the datasets, the research team and SCDOT staff 
made one deployment in Myrtle Beach, SC during the annual “Bike week” near a motorcycle 
shop located on Satchelford Road. Also, to increase the number of Class 4-5 vehicles, 
particularly school buses, the team made two deployments near Airport High School in West 
Columbia, SC.  Table 4-6 provides a summary of the deployments regarding location, time, route 
type, direction, and weather conditions. 

Table 4-6. Summary of thermal camera deployments 

Deployment 
number 

Location 
Deployment 
period 

Route type 
Direction 
of traffic 

Weather 
condition 

1 
Charleston 

Highway 

12/15/2020 

12/17/2020 

6-lane 

primary 
N Rainy/windy 

2 
Walter Price 

Road 

02/17/2021 

02/19/2021 

2-lane 

local 
NE Sunny/windy 

3 Old Dunbar 
03/04/2021 

03/05/2021 

4-lane 

secondary 
S 

Sunny/windy 
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Deployment 
number 

Location 
Deployment 
period 

Route type 
Direction 
of traffic 

Weather 
condition 

4 
Rosewood 

Drive 

03/24/2021 

03/26/2021 

2-lane 

secondary 
N Rainy/windy 

5 
Boston 

Avenue 

04/14/2021 

04/16/2021 

2-lane 

secondary 
E Sunny 

6 Myrtle Beach 
05/06/2021 

05/11/2021 

6-lane 

primary 
N 

Rainy and 

windy 

7 
Boston 

Avenue II 

05/24/2021 

05/26/2021 

2-lane 

secondary 
W Sunny 

8 
Motorcycle 

shop 

05/28/2021 

06/01/2021 

2-lane 

local 
NE Sunny 

9 
Pineview 

Road 

08/27/2021 

08/30/2021 

2-lane 

secondary 
N Sunny 

10 
Old Dunbar 

Road 

09/15/2021 

09/18/2021 

2-lane 

secondary 
S Light rain/ fog 

11 
Boston 

Avenue 

09/30/2021 

10/02/2021 

2-lane 

secondary 
E Sunny 

A total of 162,824 thermal images was generated, reviewed, and manually labeled according to 
their actual vehicle groups.  Of these, 109,867 were selected for the training dataset and the 
remainder (52,957) were used for the test dataset.  As was done with the RGB datasets, to avoid 
bias in the training and testing of the thermal CNN model, the images from one video or site 
were not included in both datasets. That is, images from one set of videos were used for training 
and images from another set of videos were used for testing.  This approach ensured that the 
thermal CNN model does not see images in testing similar to those it was trained with.  Table 4-
7 shows the number of images per class in the thermal training and test datasets. 

Table 4-7. Thermal datasets 

Class Training Test 

Background 36,201 26,192 
Class 1 961 53 

Class 2-3 66,146 25,964 
Class 4-5 1,156 713 

Class 7-13 12,403 6,077 
Total 109,867 52,957 

The thermal CNN model trained with the data shown in Table 4-7 yielded a training 
classification accuracy of 96.3%.  To test the performance of this model, it was utilized within 
DECAF. Three different sites were used for testing: Old Dunbar Road, Rosewood Drive, and 
Pineview Road. Table 4-2 shows the testing results for Old Dunbar Road during the three 
highest volume hours. The reported DECAF results are with the tracking component.  The 
presented information is similar to those presented previously with the exception of DECAF 
without tracking results being replaced with MetroCount results.  The intent of comparing the 
DECAF results against MetroCount results is to gain insight into situations where the use of 
video is better than the use of pneumatic tubes, and vice-versa. 
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Table 4-8. Comparison of DECAF and MetroCount on Old Dunbar Road 

Classes MetroCount DECAF Actual Count 

Count Over/Under Count Over/Under 
Class 1 3 +2 0 -1 1 

Class 2-3 512 +4 513 +5 508 
Class 4-5 37 +16 1 -20 21 

Class 6-13 29 -53 78 -4 82 
Total 581 -31 592 -20 612 
Total misclassified  75 30 

The Old Dunbar Road test results shown in Table 4-8 indicate that MetroCount yielded a count 
of 581 vehicles compared to an actual count of 612. Thus, MetroCount undercounted by 31 
vehicles, an error of 5%. In terms of classification, MetroCount misclassified 75 vehicles, an 
error of 12%. DECAF (with tracking) yielded a count of 592 vehicles.  Thus, it undercounted by 
20 vehicles, an error of 3%. The misclassification by DECAF is 30 vehicles, an error of 5%.  It 
can be concluded from these results that DECAF outperformed MetroCount and that it produced 
estimates within 5% of the actual values. 

Table 4-9. Comparison of DECAF and MetroCount on Rosewood Drive 

Classes MetroCount DECAF Actual Count 

Count Over/Under Count Over/Under 
Class 1 2 +1 0 -1 1 

Class 2-3 160 +16 139 -5 144 
Class 4-5 14 +11 0 -3 3 

Class 6-13 176 -22 194 -4 198 
Total 352 +6 333 -13 346 
Total misclassified  50 13 

The Rosewood Drive test results shown in Table 4-9 indicate that MetroCount yielded a count of 
352 vehicles compared to an actual count of 346.  Thus, it overcounted by 6 vehicles, an error of 
2%. In terms of classification, MetroCount misclassified 50 vehicles, an error of 14%.  DECAF 
(with tracking) yielded a count of 333 vehicles.  Thus, DECAF undercounted by 13 vehicles, an 
error of 4%. The misclassification by DECAF is 13 vehicles, an error of 4%. It can be 
concluded from these results that MetroCount outperformed DECAF in counting but 
underperformed DECAF in classification. DECAF produced estimates within 5% of the actual 
values. 

Table 4-10. Comparison of DECAF and MetroCount on Pineview Road 

Classes MetroCount DECAF Actual Count 

Count Over/Under Count Over/Under 
Class 1 2 +1 1 0 1 

Class 2-3 384 -64 427 -21 448 
Class 4-5 76 +74 0 -2 2 

Class 6-13 18 -7 25 0 25 
Total 480 +4 453 -23 476 
Total misclassified  146 0 23 
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The Pineview Road test results shown in Table 4-10 indicate that MetroCount yielded a count of 
480 vehicles compared to an actual count of 476.  Thus, it overcounted by 4 vehicles, an error of 
1%. In terms of classification, MetroCount misclassified 146 vehicles, an error of 30%.  DECAF 
(with tracking) yielded a count of 453 vehicles.  Thus, DECAF undercounted by 23 vehicles, an 
error of 5%. The misclassification by DECAF is 23 vehicles, an error of 5%. It can be 
concluded from these results that DECAF outperformed MetroCount in counting but 
underperformed DECAF in classification. DECAF produced estimates within 5% of the actual 
values. 

4.6 Effect of offsets on thermal CNN model results 

The purchased trailer and custom-made platform allowed the camera to be mounted at a 
maximum height of 18 feet. Mounting it lower to the ground is not desirable since it will 
primarily provide a side view instead of a top and side view.  Mounting it higher is not only 
infeasible but also not desirable because of the amount of camera motion likely to be generated 
by wind. To determine the optimal offset distance (i.e., distance from the edge of the road to the 
left tire of the trailer, with the hitch arm positioned parallel to the roadway) for deploying the 
trailer and thermal camera, three different distances were evaluated (6, 12, and 18 feet) at 2 
different locations (Old Dunbar Road and Boston Avenue).  At each offset distance, one hour 
and thirty minutes of traffic data were used for the evaluation of counting and classification 
accuracy. To avoid sampling bias, each offset distance was evaluated at two different times of 
the day. Lastly, each offset was evaluated at the same times for three consecutive days. Table 4-
11 provides a summary of the offset evaluation setup, along with weather and wind conditions. 

Table 4-11. Offset evaluation setup 

Date Time Location 
Offset 

(ft) 
Weather 

Wind 

(MPH) 

9/15/2021 – 
9/17/2021 

7:30-9:00 
Old Dunbar 

Road 
6 

Light rain & fog 
70-72° F 

2 

9/15/2021 – 
9/17/2021 

16:00-
17:30 

Old Dunbar 
Road 

6 4 

9/15/2021 – 
9/17/2021 

7:30-9:00 
Old Dunbar 

Road 
12 

Light rain & fog 
73-80° F 

3 

9/15/2021 – 
9/17/2021 

16:00-
17:30 

Old Dunbar 
Road 

12 3 

9/15/2021 – 
9/17/2021 

7:30-9:00 
Old Dunbar 

Road 
18 

Cloudy 
73-81° F 

1 

9/15/2021 – 
9/17/2021 

16:00-
17:30 

Old Dunbar 
Road 

18 
1 

9/30/2021 -
10/2/2021 

7:30-9:00 Boston Avenue 6 
Sunny 

72-88° F 

0 

9/30/2021 -
10/2/2021 

16:00-
17:30 

Boston Avenue 6 4 

9/30/2021 -
10/2/2021 

7:30-9:00 Boston Avenue 12 Fog & partly 
sunny 

75-82° F 

2 

9/30/2021 -
10/2/2021 

16:00-
17:30 

Boston Avenue 12 3 

9/30/2021 -
10/2/2021 

7:30-9:00 Boston Avenue 18 
Sunny 

72-83° F 
4 
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Date Time Location 
Offset 

(ft) 
Weather 

Wind 

(MPH) 

9/30/2021 -
10/2/2021 

16:00-
17:30 

Boston Avenue 18 2 

Table 4-12 shows the results of the offset evaluation.  At 6 feet offset, DECAF has a counting 
error of 1% and classification error of 6% at Old Dunbar Road, compared to 2% and 11% 
respectively at Boston Avenue.  At 12 feet offset, DECAF has a counting error of 12% and 
classification error of 13% at Old Dunbar Road, compared to 4% and 28% respectively at Boston 
Avenue. At 18 feet offset, DECAF has a counting error of 2% and classification error of 12% at 
Old Dunbar Road, compared to 4% and 20% respectively at Boston Avenue.  These findings 
suggest that six feet offset is best.  It should be noted the CNN model was trained with images 
that have an offset distance closer to six feet than 12 and 18.  That is, at the 11 deployed sites, the 
most practical offset distance was around six feet. The reason for the high classification error at 
Boston Avenue when the offset distance was at 6 feet is due to the misclassification of class 4-5 
(i.e., school buses). The high misclassification is due to the thermal CNN model being trained 
with a very low number of class 4-5 images; only deployment 5 at the Airport High School 
provided images of school buses. Therefore, a higher misclassification rate can be expected at 
locations where there is a high percentage of school buses. 

Table 4-12. Offset evaluation results 

Location Offset (ft) Counting Error Classification Error 

Old Dunbar Road 6 1% 6% 
Old Dunbar Road 12 12% 13% 
Old Dunbar Road 18 2% 12% 
Boston Avenue 6 2% 11% 
Boston Avenue 12 4% 28% 
Boston Avenue 18 4% 20% 

4.7 Effect of windy conditions on thermal CNN model results 

As discussed in Appendix A, the procedure for deploying the trailer is to secure the platform to 
which the thermal camera is affixed with two cables to the trailer to minimize camera motion. 
Even with these measures implemented, due to the height and weight of the camera, a noticeable 
camera motion can be seen visually on windy days, and the results from DECAF clearly show 
their undesired effects. Table 4-13 shows the results in breezy conditions (≥ 15 MPH). The data 
are from the Rosewood Drive deployment on March 25, 2021.  Between 1 to 3 p.m. when the 
conditions were breezy, DECAF overcounted by one vehicle, an error of 1%, and it misclassified 
nine vehicles, an error of 5%. Between 3:30 and 5:30 p.m. when there were gusts in excess of 30 
MPH, DECAF overcounted by 34 vehicles, an error of 27%, and it misclassified 40 vehicles, an 
error of 32%.  Therefore, the use of the trailer and thermal camera is not recommended on windy 
days. 

Table 4-13. Effect of wind results 

Date and Time Wind Conditions Counting Error  Classification Error 

3/25/2021, 1:00 – 3:00 p.m. Moderate +1 (1%) 9 (5%) 
3/25/2021, 3:30 – 5:30 p.m. Strong +34 (27%) 40 (32%) 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This project investigated the use of traffic cameras, specifically the Miovision Scout and FLIR 
TrafiSense2 Dual, to count and classify vehicles via post-processing algorithms.  Given a series 
of traffic videos in MP4 format that span 24 or 48 hours, the goal was to provide a count of the 
number of vehicles in each of the following four categories: motorcycles, passenger cars and 
light trucks, buses/campers/tow trucks, and small to large trucks. To achieve this goal, this 
project implemented standard video processing steps for counting vehicles, which include 
motion object segmentation, blob detection, blob analysis, and tracking. These steps were 
augmented with a classification step (after blob detection) enabled by the development of a CNN 
model unique to this project. To our knowledge, the manually labeled images of vehicles with a 
top-side view used to train the CNN models, is the first of its kind.  Additionally, the developed 
tracking algorithm is unique in that it uses the trajectories of objects to determine those that are 
most likely created by a vehicle. Moreover, to facilitate the use of the developed algorithms, a 
Windows application named DECAF, with a graphical user interface, was developed to allow 
users to easily select video files, draw the region of interest where vehicles should be counted 
and classified, and view the results. 

While the performance of DECAF using the Miovision Scout-collected daytime videos produced 
satisfactory performance in terms of counting and classification, the nighttime videos did not. 
This was primarily due to poor lighting conditions which led to poor quality images. Many of 
the nighttime images had to be removed from the dataset during the review and sorting process 
because the researchers could not determine to which vehicle group they belonged.  Four 
different low-light image enhancement methods were explored, but none of the combinations 
tested produced a significantly better image. The small nighttime training dataset led to poor 
CNN model performance, and changes made to the convolutional network architecture for the 
nighttime model did not show improvement.  For these reasons, in consultation with the SCDOT 
steering committee, it was determined that thermal imaging should be used to overcome the 
nighttime lighting issue.  The FLIR TrafiSense2 Dual camera was selected, purchased, and 
assembled.  Since this camera does not come with a built-in power source, a solar-powered 
trailer was also purchased. 

The convolutional network architecture developed previously using visual images was also 
optimal for the thermal images.  The thermal CNN model, when used within DECAF, yielded a 
counting and classification accuracy of at least 95%, which was the aim of this project. 
Compared to MetroCount, DECAF produced higher classification accuracy and comparable 
count accuracy, when deployed in recommended conditions.  

5.2 Recommendations 

Based on this project’s findings, it is recommended that the SCDOT consider using the 
purchased solar-powered trailer and thermal camera to collect traffic data on high-volume roads 
and using the developed Windows application, DECAF, to obtain vehicle counts by categories. 
Deploying the trailer and thermal camera on the side of the road will be safer for the SCDOT 
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personnel than deploying MetroCount’s pneumatic tubes across multiple lanes.  The level of 
effort required for deploying the trailer and thermal camera is similar to that of deploying the 
Miovision Scout which the SCDOT has done in the past.  The advantage of using the in-house 
equipment and software is that it will save the SCDOT the video processing cost, approximately 
$500.00 per 48-hour count. There are two situations where the use of the thermal camera and 
DECAF are not recommended over MetroCount’s counters: 1) breezy conditions (over 15 MPH) 
with gusts over 30 MPH for portions of the 48-hour period, and 2) extreme heat with 
temperatures above 90 °F for portions of the 48-hour period. When selecting a suitable day for 
deploying the thermal camera, the SCDOT staff was always mindful of the weather and avoided 
rainy days. It is recommended that this practice be maintained in the future.  Cloudy days do not 
pose any power problem for the thermal camera. 

5.3 Implementation plan 

The hardware purchased and assembled as part of this project, solar-powered trailer and thermal 
camera has already been delivered to the SCDOT.  This equipment is stored at the SCDOT 
storage facility on Shop Road and is secured with two locks for which the SCDOT has keys. 
Transporting the trailer to the site requires a truck with a hitch.  An SCDOT truck has been used 
for this purpose.  Guidelines for deploying the trailer are provided in Appendix A.  Once the 
trailer is positioned with the left tire between six to eight feet from the edge of the white 
pavement marker and the thermal camera is raised via the mast to 18 feet, the platform for which 
the camera is affixed needs to be secured with two cables to the trailer to minimize camera 
motion.  The offset distance can be measured by pacing, or more accurately, by using a tape 
measure.  In positioning the trailer, due to its weight, two staff members are recommended to 
avoid injury. The process of setting up the trailer and camera can be performed without the need 
for traffic control. Once the trailer and camera are set up, then the recording software needs to 
be configured; step-by-step instructions for setting up the recording software are provided in 
Appendix B. 

A Windows-based stand-alone application was provided to the SCDOT along with the final 
project report.  This application will need to be installed by SCDOT IT staff on the computer 
which is reserved for video processing. It is recommended that this computer not be used while 
the video is being processed. On average, a 24-hour video will take about 24 hours to process, 
and a 48-hour video will take about 48 hours to process.  Figure 5-1 shows a screenshot of 
DECAF, with the primary steps outlined.  Step-by-step instructions for using DECAF are 
provided in Appendix C. 
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Figure 5-1. Screenshot of DECAF with primary steps outlined 

As illustrated in Figure 5-1, the use of DECAF to post-process one or more videos requires the 
user to follow the following five steps. These steps are demonstrated as part of the training 
provided to SCDOT staff at the completion of the project. 

 Step 1. Click on the folder icon on the toolbar to select the folder where the video files 
are stored. It is recommended that the video files are stored on the computer’s hard drive 
and not an external hard drive or flash drive. 

 Step 2. Click on the polygon icon on the toolbar to draw the region of interest (ROI). 
The ROI is the area where the user wants vehicles to be detected and classified.  The ROI 
should be positioned further downstream, with respect to the camera location. 

 Step 3. Click on the input icon on the toolbar to input project information and desired 
aggregation interval for summary statistics. 

 Step 4. Click on the magnifying glass icon on the toolbar to process the video.  The 
videos will be processed at or slightly faster than in real-time. The computer should not 
be used to perform other tasks while DECAF is running. 

 Step 5. Once the processing is finished, click on either the PDF icon or CVS icon to open 
the report in the desired format.  
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APPENDIX A 

Instructions for storing the solar-power trailer 

When not in use, the solar-powered trailer should be stored at the SCDOT storage facility on 
Shop Road, between the fence and the shed, and the platform with the thermal camera attached 
should be stored in the office at SCDOT headquarters.  During storage or at a deployment site, 
the solar panel should be oriented to face south (shown below); doing so will ensure the panel 
will receive the highest amount of sunlight to charge the batteries.  While in storage, the trailer 
should be secured with two locks.  The first lock should be placed on the trailer hitch to prevent 
the trailer from being mounted onto a vehicle.  The second lock should be placed on the NEMA 
box to prevent it from being opened; the NEMA box provides housing for the batteries and all of 
the FLIR TrafiSense2 Dual camera components.  

Instructions for transporting and deploying the solar-power trailer and thermal camera 

1. Unlock the hitch lock and mount the trailer onto the SCDOT truck’s hitch. 
2. Orient the solar panel parallel to the ground to minimize drag during transport. 
3. Transport the trailer to the site and position the vehicle and trailer to the right side of the 

road. Two staff members are recommended for the following tasks, which can be done 
without the need for traffic control. 

4. Position the trailer with the hitch arm parallel to the road and the left tire of the trailer 6 
feet from the edge of the road. 

5. Level the trailer. 
6. Orient the solar panel to face south. 
7. Mount the platform which has the thermal camera attached onto the mast.  Position the 

camera to point in the direction of traffic to provide a top-side view of vehicles.  
8. Attach two cables, one on the right side of the camera platform and one on the left side of 

the camera platform.   
9. Wind the crank clockwise to raise the camera up to 18 feet high; this height is marked 

and labeled on the mast. 
10. Secure the two cables that are attached to the camera platform to the trailer to minimize 

camera motion as shown below. 
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11. Set up the recording software following the instructions provided in Appendix B.  
12. Before leaving the deployment site: 1) put a lock on the crank to prevent the mast from 

being lowered (shown below), 2) put a lock on the hitch to prevent the trailer from being 
stolen, and 3) put a lock on the NEMA box to prevent anyone from accessing the 
batteries and camera components during deployment. 
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APPENDIX B 

Instructions for setting up the recording  

Prerequisite: a laptop with Windows and FLIR camera and recording software, which have been 
made available on ProjectWise. The following instructions assume the software has been 
installed on a laptop with two shortcuts labeled “FLIR Camera” and “FLIR ITS Record.” 

1. Turn on the power strip/surge protector. 
2. Plug the green cable (connected on one end to the thermal camera) to the blue connector as 

shown below.  This step connects the camera to the POE injector to enable the camera to 
receive power. 

3. Plug one end of a Cat 5 cable to the yellow connector as shown below and the other end of 
the Cat 5 cable to the Cat 5-to-USB converter. 
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4. Plug the Cat5-to-USB converter into the laptop’s USB port.  This step and the previous one 
connects the laptop to the switch to enable the laptop to communicate with the Raspberry Pi 
which runs the recorder software. 

5. Turn on the laptop and login. 
6. Double-click on the shortcut labeled “FLIR Camera” to check the thermal camera view. 

7. Once the camera software is up and running, the user should see the following Live View 
window. It may take a couple of minutes for the connections from the laptop to the 
Raspberry Pi, and from the Raspberry Pi to the thermal camera to establish. 

8. A window with the message “No Internet” will appear if there is a connection issue.  In this 
case, double check all cable connections or reconnect them.  Wait for the connections to 
establish. Once connected, a Live View window will show what is being seen by the thermal 
camera. 

9. Change the angle of the thermal camera, if needed, to point in the direction of traffic to 
provide a top-side view of vehicles.  If the camera angle needs to be adjusted, then the mast 
will need to be lowered. 

10. Double click on the shortcut labeled “FLIR ITS Record” to run the recorder software as 
shown below. 
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11. Once the recorder software is up and running, click on the “Recordings” link as shown 

below. 

12. Under Time Synchronization, select “Force Timesync” as shown below. 
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13. Click on the “Settings” option under Recordings as shown below. 

14. Input 600 (seconds) for the video duration as shown below. 

15. Input 10 (minutes) for the recording interval as shown below.  This step and the previous one 
will create a recording every 10 minutes, with each video being 10 minutes long.  Select 
“Force AVI Recording” as shown below to start recording. 

16. Disconnect the Cat 5 cable from the Cat5-to-USB converter. 
17. Disconnect the Cat5-to-USB converter from the laptop’s USB port. 
18. Shutdown the laptop. 
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Instructions for stopping the recording 

To stop the recording after the desired data collection period (24 or 48 hours), return to the site 
where the trailer was deployed and perform the following steps. 

1. Plug one end of a Cat 5 cable to the yellow connector as shown below and the other end of 
the Cat 5 cable to the Cat 5-to-USB converter. 

2. Plug the Cat5-to-USB converter into the laptop’s USB port.   
3. Turn on the laptop and login. 
4. Double click on the shortcut labeled “FLIR ITS Record” to run the recorder software as 

shown below. 

5. Click on the “Recordings” link as shown below 
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6. Click on the “Settings” option under Recordings as shown below. 

7. Under Triggers, select “Deactivate” to stop recording as shown below.  

8. If recorded data need to be downloaded, follow the “Instructions for downloading recorded 
data” provided in the next section. If not, disconnect the Cat 5 cable from the Cat5-to-USB 
converter and remove the Cat5-to-USB converter from the laptop. 

9. Shutdown the laptop. 
10. Turn off the power strip/surge protector. 
11. Lower the mast. 
12. Remove the platform with the thermal camera attached to it.  Put the camera in the front seat 

of the truck and store it in the office at headquarters. 
13. Orient the solar panel parallel to the ground to minimize drag during transport. 
14. Transport the trailer to the storage facility.  
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Instructions for downloading recorded data 

The following instructions convert recorded data in Linux format to Windows format and 
transfer the recorded videos from an external hard drive to the laptop. 

1. With the laptop turned on and connected to the switch via the Cat 5 cable, double-click on 
the file transfer shortcut as shown below. 

2. Create a folder on the laptop where the videos should be stored.  Use location and date of the 
deployment for the folder name. 

3. Select the folders containing the videos to be copied (right pane of the window shown 
below). Multiple folders can be selected using either Ctrl or Shift key. Each folder contains 
a 10-minute video and is named by the date and starting time of the recording. 

4. Drag the selected folders to the left pane of the window shown below.  The file transfer 
process will take approximately one hour to complete for 24 hours of recording. 
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APPENDIX C 

The following instructions assume that DECAF has been installed on a computer reserved for 
processing videos. 

Instruction for using DECAF 

1. Double click on the DECAF icon/shortcut to run it. The following window will appear. 

2. On the toolbar, select the folder icon as shown below and select the folder that contains the 
videos to be processed. 

3. On the toolbar, click on the polygon icon as shown below to draw the region of interest 
(ROI), where vehicles should be detected and classified. 
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4. Draw the ROI by establishing vertices via the mouse's left button. To close the polygon, 
double-click on the starting vertex with the left button.  The ROI should be drawn further 
downstream on the road with respect to the camera position as shown below. 

5. Right-click inside the drawn ROI and select add the selected “Add region.” 
6. On the toolbar, select the input icon as shown below to input project information and desired 

aggregation interval for the report. 

7. Provide the date, time, location, and direction of the collected traffic data.  By default, the 
aggregation interval is set to 15 minutes (i.e., the PDF report will provide counts by 
categories for every 15 minutes), but it could be changed to 30 minutes or 1 hour.  Click on 
the Submit button upon completion of entry. 
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8. On the toolbar, click on the magnifying glass icon as shown below to process the videos. 
The videos will be processed at or slightly faster than in real-time, depending on the traffic 
volume. The computer should not be used to perform other tasks while DECAF is running. 

9. Once the videos are processed, the PDF and CVS report options will be available.  To open 
the PDF report, click on the PDF icon and to open the CSV report, click on the CSV icon as 
shown below. 

10. To exit DECAF, click on the X icon on the toolbar, select File and then Exit, or close the 
DECAF window. 
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